Найти ВСЕ РАЗЛОЖЕНИЯ функции в Ряд Лорана по степеням z и для них установить области сходимости.

Аватар автора
Математические методы и алгоритмы
#лорана Будем предполагать, что функция является аналитической всюду в комплексной плоскости, за исключением некоторого конечного множества особых точек. Каждая такая точка имеет окрестность, в которой нет других особых точек, т.е. все эти точки являются изолированными особыми точками. Через каждую изолированную особую точку функции проведем окружность с центром в заданной точке z0. Система этих концентрических окружностей разделит комплексную плоскость на конечное число концентрических колец, в каждом из которых рассматриваемая функция f(z) аналитична. Стало быть, в каждом из этих колец, согласно теореме Лорана, функцию можно представить рядом Лорана. Отметим, что ряды Лорана функции f(z) в разных кольцах не могут совпадать. Действительно, область сходимости ряда Лорана есть кольцо, быть может дополненное частью его границы. Между двумя концентрическими кольцами, на которые разделена комплексная плоскость, имеются особые точки функции. Если бы ряды Лорана для двух колец совпадали...

0/0


0/0

0/0

0/0