Дискретная математика для гуманитариев, 1 курс университета: ЭЛЕМЕНТНАЯ ТЕОРИЯ МНОЖЕСТВ

Аватар автора
Майоров Дмитрий
ЭЛЕМЕНТНАЯ ТЕОРИЯ МНОЖЕСТВ Мы прошли элементарную теорию множеств и решали простые задачки на теорию множеств Элементарная теория множеств - это область математики, которая изучает основные понятия, определения и свойства множеств. Основные понятия в элементарной теории множеств включают множество, элемент, подмножество, равенство множеств, операции над множествами, такие как объединение, пересечение и разность множеств, а также универсальное множество и пустое множество. Элементарная теория множеств формулирует и доказывает различные теоремы и принципы, связанные с множествами, и является основой для более сложных областей математики, таких как топология, алгебра и теория вероятности. В элементарной теории множеств используются логические операции, такие как отрицание, конъюнкция и дизъюнкция, а также кванторы всеобщности и существования. Они позволяют задавать и выражать свойства множеств и выполнять операции со множествами. Элементарная теория множеств имеет широкое применение в математике, логике, информатике и других науках, где множества используются для формализации и решения различных проблем и задач. Задача Пусть А={1,2,3,4,5},В={3,5,7,8},С={0,6,9}.Найти АUВ, А∩С, АВ, ВС Решение: АUВ - это объединение всего, что входит в А и В. АUВ={1,2,3,4,5, 7,8} А∩С - это пересечение, т. е. только общие элементы А и С. Т. к. общих элементов нет, то А∩С - пустое множество. АВ - разность А и В, т. е. все элементы А кроме тех, которые входят в В. АВ={1,2,4} Аналогично...

0/0


0/0

0/0

0/0