Квадратичные иррациональные числа, их цепные дроби и их палиндромы

Аватар автора
Ленинский Букварь
Вещественное число x представлено цепной дробью с целыми неполными частными a_1, a_2,… (пишут x=[a_1, a_2,…]), если: x = a_1 + (1/(a_2 + (1/(a_3 + …))), (a_k › 0 при k › 1) Пример (“Золотое сечение”): x = (√5+1)/2 = [1,1,1,…]. Ж. Л. Лагранж доказал, что последовательность неполных частных (начиная с некоторого места) периодична, если и только если число x — квадратичная иррациональность. Р. О. Кузьмин доказал, что в последовательности неполных частных почти любого вещественного числа доля d_m равных m неполных частных одинакова (для типичных вещественных чисел). Доля d_m убывает при m→∞ как 1/m^2 и её величина была предсказана Гауссом (ничего не доказавшим). В. И. Арнольда высказал (лет 20 назад) гипотезу, что статистика Гаусса–Кузьмина d_m выполняется также для периодов цепных дробей корней квадратных уравнений x^2+px+q=0 (с целыми p и q): если выписать вместе неполные частные, составляющие периоды всех цепных дробей корней таких уравнений с p^2+q^2≤R^2, то доля неполного частного m среди них будет стремиться к числу d_m при R→∞. В. А. Быковский со своими хабаровскими учениками доказали недавно эту давнюю гипотезу. Несмотря на это, вопрос о статистике не букв, а составленных из них слов [a_k+1, a_k+2,…, a_k+T], которые являются периодами цепных дробей каких-либо корней x уравнений x^2+px+q=0 далеко не решён. А именно, статистика таких слов вовсе не совпадает со статистикой всех случайных слов из неполных частных, удовлетворяющих статистике Гаусса–Кузьмина (даже...

0/0


0/0

0/0

0/0