Ansys CFX: Flow in a Catalytic Converter (tutorial)

Аватар автора
Поддержка технологий
In this tutorial, you will model a catalytic converter in order to determine the pressure drop and heat transfer through it when air enters the inlet at 25 m/s and 500 K, and exits the outlet at a static pressure of 1 atm. For simplicity, you will not model chemical reactions. You are provided with a mesh for the passageways inside a pipe-and-flange structure. You will use this mesh, and a copy of it, to model the pipe and flange portions of the flow field, at both ends of the catalytic converter. For the housing, you are provided with a hexahedral mesh that was created in ICEM-Hexa. This mesh fills the entire 3D volume of the housing. To model the presence of the honeycomb structure that exists in the housing, you will model porosity and apply resistance to the flow. The honeycomb structure has a porosity of 70%, which means that 70% of the total volume is available for fluid flow, while the other 30% is occupied by the solid material that comprises the honeycomb structure. The solid component of the structure will be steel. The honeycomb structure is lined up with the flow to prevent flow travel in the transverse direction. To model resistance to the flow, you will apply a streamwise quadratic resistance coefficient of 650 kg m^-4. To reduce the amount of transverse flow, apply a quadratic resistance coefficient of 6500 kg m^-4 in the transverse direction. These given resistance coefficients are based on the superficial flow velocity, rather than the true flow velocity.

0/0


0/0

0/0

0/0